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Abstract— In this paper a weighted balanced realization
and model reduction for nonlinear systems is proposed which
is based on singular value analysis of nonlinear Hankel
operators. In the proposed model reduction procedure, an
important property, stability is preserved. A numerical ex-
ample is also shown. This result is expected to be a basis for
weighted model order reduction for nonlinear systems.
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I. INTRODUCTION

A nonlinear extension of the state-space concept of
balanced realizations was proposed in [1] by introduc-
ing controllability and observability functions which are
nonlinear counterparts of controllability and observability
Gramians. Since then, many results on global balancing
[2], modifications [3], computational issues [4], [5] and
related minimality considerations [6], [7] have appeared in
the literature. The authors also worked on both input-output
and state-space characterizations of balanced realization
based on singular value analysis analysis of nonlinear
Hankel operators, e.g. [8], [9]. Although it still needs a lot
of (computational) effort to calculate a nonlinear reduced
order model in a practical situation, basic algorithms for
model order reduction based on balanced realization were
already established.

On the other hand, in the linear case, there is a technique
called frequency weighted model order reduction which
preserves the input behavior with respect to a certain
frequency bandwidth. This technique is utilized quite often
in the real world application. For instance, the behavior
of a model with respect to too high frequencies does
not coincide with that of the actual plant, so the input-
output behavior with respect to lower frequencies should
be preserved. A basic framework of frequency weighted
balanced truncation in the linear case was proposed in
[10]. However, in this procedure, some important prop-
erties, such as controllability, observability, and stability
are not preserved even when the original system possesses
these properties. Sreeram et al. [11] proposes a modified
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approach which guarantees stability of the reduced order
model. The purpose of the present paper is to establish a
nonlinear balanced truncation method by extending these
linear case results to the nonlinear case. In particular we
will derive a weighted nonlinear model order reduction
method based on our former work [9] preserving stability
of the original system as the Sreeram’s result.

II. PRELIMINARIES

In this section we refer to nonlinear balanced truncation
[9] and linear frequency weighted balanced truncation [11],
respectively.

A. Balanced realization and model reduction for nonlinear
systems

In this section, we refer to some preliminary results on
nonlinear balanced realization. Consider an input-affine,
time invariant, asymptotically stable nonlinear system

Σ :

{

ẋ = f(x) + g(x)u

y = h(x)
(1)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
r. Its controlla-

bility function Lc(x) and observability function Lo(x) are
defined by

Lc(ξ) := inf
u∈L

−

2
x(−∞)=0,x(0)=ξ

1

2
‖u‖2

Lm
2

Lo(ξ) :=
1

2
‖y‖2

Lr
2
, x(0) = ξ, u = 0.

In the linear case,

Lc(x) =
1

2
xTP−1x, Lo(x) =

1

2
xTQx

hold with the controllability and observability Gramians P

and Q. The functions Lc(x) and Lo(x) fulfill the following
Hamilton-Jacobi equations.

∂Lc(x)

∂x
f(x) +

1

2

∂Lc(x)

g
(x)g(x)T

∂Lc

∂x

T

= 0

∂Lo(x)

∂x
f(x) +

1

2
h(x)Th(x) = 0

Here ẋ = −f−ggT(∂Lc(x)/∂x)T is asymptotically stable
in a neighborhood W of the origin.

Theorem 1: [1] Assume that ẋ = f(x) is asymptotically
stable in a neighborhood W of the origin. If the system is



zero-state observable and Lo exists and is smooth on W,
then Lo(x) > 0, ∀x ∈ W, x 6= 0

Next, we review nonlinear balanced realization.
Theorem 2: [9] Suppose that Lc(x) and Lo(x) exist and

that Hankel singular values of the Jacobian linearization
of Σ are nonzero and distinct. Then there exist a neigh-
borhood U of the origin and a coordinate transformation
x = Φ(z) on U converting the system into the following
form

Lc(Φ(z)) =
1

2

n
∑

i=1

z2
i

σi(zi)

Lo(Φ(z)) =
1

2

n
∑

i=1

z2
i σi(zi)

.

Here σi(zi)’s are Hankel singular value functions of Σ.
This realization is called nonlinear balanced realization
which has the following properties.

zi = 0 ⇔
∂Lc(Φ(z))

∂zi

=
∂Lo(Φ(z))

∂zi

= 0

σ2
i (zi) =

Lo(Φ(0, . . . , 0, zi, 0, . . . , 0))

Lc(Φ(0, . . . , 0, zi, 0, . . . , 0))

The Hankel singular value functions σi(zi)’s represent
the importance of the state variables zi’s with respect
to the input-output behavior of the system. Therefore we
can get a reduced order model by truncating important
states. This technique is called balanced truncation. Let
Σa denote a reduced order model with state variables
za = (z1, . . . , zk).

Theorem 3: [9] The controllability and observability
functions La

c (za) and La
o(z

a) of Σa satisfy

La
c (za) = Lc(Φ(za, 0))

La
o(za) = Lo(Φ(za, 0)).

Furthermore, Hankel singular values σa
i (za

i ) of Σa satisfy

σa
i (za

i ) = σi(zi), i = 1, . . . , k.

These theorems imply that some important properties
of Σ are preserved. Local asymptotic stability is also
preserved.

B. Frequency weighted balanced realization and model
reduction of linear systems

In the linear systems theory, frequency weighted bal-
anced realization was introduced by Enns[10] and it was
modified by Sreeram et al.[11] to guarantee stability of the
reduced order model. Consider a following asymptotically
stable and minimal linear system

Σ :

{

ẋ = Ax + Bu

y = Cx
(2)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
r. Let the state-

space realization of the input and output weights be given

by

Wi :

{

ẋi = Aixi + Biui

yi = Cixi + Diui

, Wo :

{

ẋo = Aoxo + Bouo

yo = Coxo + Douo

(3)
where these realizations are minimal and asymptotically
stable. Therefore, the state-space realization of the aug-
mented system WoΣWi is given by

WiΣWo :

{

˙̄x = Āx̄ + B̄u

y = C̄x̄
(4)

Ā =





A 0 BCi

BoC Ao 0

0 0 Ai



 , B̄ =





BDi

0

Bi





C̄ =
(

DoC 0 Co

)

, x̄T =
(

xT xT
o xT

i

)

.

We assume that there are no pole-zero cancellation in
WoΣWi. The controllability and observability Gramians of
the augmented system P̄ and Q̄ fulfill Lyapunov equations.

ĀP̄ + P̄ ĀT + B̄B̄T = 0 (5)

Q̄Ā + ĀTQ̄ + C̄TC̄ = 0 (6)

In Sreeram’s technique, the weighted controllability and
observability Gramians P and Q corresponding to Σ are
defined by

P := P11 − P13P
−1
33 PT

13, Q := Q11 − Q12Q
−1
22 QT

12 (7)

where Pij ’s and Qij’s satisfy

P̄ =





P11 P12 P13

PT
12 P22 P23

PT
13 PT

23 P33



 , Q̄ =





Q11 Q12 Q13

QT
12 Q22 Q23

QT
13 QT

23 Q33



 .

(8)
Since there are no pole-zero cancellation, P and Q are
positive definite. Then we can calculate the balancing co-
ordinate transformation x = Tz for the weighted balanced
realization satisfying

T−1PT−T = TTQT = diag(σ1, σ2, . . . , σn). (9)

Let us verify the stability of the reduced order model.
Equations (5)–(7), we can obtain the following Lyapunov
equations

AP + PAT + XXT = 0 (10)

QA + ATQ + Y TY = 0 (11)

where X := BDi−P13P
−1
33 Bi, Y := DoC−CoQ

−1
22 Q12.

Since P and Q are positive definite and A is stable,
(A, X) is controllable and (Y, A) is observable. Here, let
(Ar, Xr, Y r) denote the reduced order model truncated
from the system (A, X, Y ). Since the truncation procedure
applied here is a conventional (non-weighted) balanced
truncation, the asymptotic stability of the original system
is preserved, that is, Ar is stable.



When Wo = id holds1, i.e., only the input weight is
applied, the weighted observability Gramian Q defined in
Equation (8) coincides with the unweighted observability
Gramian of the original system and Y = C holds. Simi-
larly, when Wi = id, the weighted controllability Gramian
P coincides with the unweighted one and X = B.

III. MAIN RESULTS

This section generalizes nonlinear balanced realization
and nonlinear balanced truncation technique to include
input and output weights. Stability of the reduced order
model will be proved.

A. Nonlinear weighted balanced realization

Let us extend the technique for linear systems to nonlin-
ear systems here. Consider a time invariant, input-affine,
nonlinear system,

Σ :

{

ẋ = f(x) + g(x)u

y = h(x)
(12)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
r. Σ is

assumed to be asymptotically stable in a neighborhood
of 0. Furthermore, we employ time invariant, input-affine,
asymptotically stable minimal nonlinear systems Wi and
Wo for the input and output weighting operators

Wi :

{

ẋi = fi(xi) + gi(xi)ui

yi = hi(xi) + di(xi)ui

,

Wo :

{

ẋo = fo(xo) + go(xo)uo

yo = ho(xo) + do(xo)uo

.

(13)

Then the state-space realization for the augmented system
Wo ◦ Σ ◦ Wi is given by

Wo ◦ Σ ◦ Wi :

{

˙̄x = f̄(x̄) + ḡ(x̄)u

y = h̄(x̄)
(14)

f̄(x̄) =





f(x) + g(x)hi(xi)

fo(xo) + go(xo)h(x)

fi(xi)



 ,

ḡ(x̄) = ḡ(x, xi) =





g(x)di(xi)

0

gi(xi)



 ,

h̄(x̄) = h̄(x, xo) = ho(xo) + do(xo)h(x),

x̄T =
(

xT xT
o xT

i

)

.

Now, assume that the augmented system is asymptotically
stable and minimal. The controllability function L̄c(x̄)

and observability function L̄o(x̄) of the augmented system
fulfill the following Hamilton-Jacobi equations.

∂L̄c(x̄)

∂x̄
f̄(x̄) +

1

2

∂L̄c(x̄)

∂x̄
ḡ(x̄)ḡ(x̄)T

∂L̄c(x̄)

∂x̄

T

= 0 (15)

∂L̄o(x̄)

∂x̄
f̄(x̄) +

1

2
h̄(x̄)Th̄(x̄) = 0 (16)

1The symbol id denotes the identity operator.

Our purpose is to obtain the weighted controllability func-
tion Lc(x) and the observability function Lo(x) corre-
sponding to Σ truncated from L̄c(x̄) and L̄o(x̄), respec-
tively, as in the linear case. We use state constraints on xi

and xo to define these functions, i.e.,

Lc(x) := L̄c(x, x̃oc(x), 0), Lo(x) := L̄o(x, x̃oo(x), 0)

(17)
where x̃oc(x) and x̃oo(x) are constraints on the state xo

satisfying

∂L̄c(x, xo, xi)

∂xo

∣

∣

∣

∣

xo=x̃oc(x)
xi =0

≡ 0, (18)

∂L̄o(x, xo, xi)

∂xo

∣

∣

∣

∣

xo=x̃oo(x)
xi =0

≡ 0. (19)

According to the implicit function theorem, it is guaranteed
that there exist x̃oc(x) and x̃oo(x) in a neighborhood of a
point where the Hessians of L̄c(x, xo, 0) and L̄o(x, xo, o)

with respect to xo are positive definite, i.e.,

∂2L̄c(x̄)

∂x2
o

∣

∣

∣

∣

xi=0

> 0,
∂2L̄o(x̄)

∂x2
o

∣

∣

∣

∣

xi=0

> 0. (20)

Since the Gramians of the Jacobian linearization of the
augmented system are positive definite, the functions
x̃oc(x) and x̃oo(x) exist in a neighborhood of the origin.
For convenience, we write x̃oc(x) and x̃oo(x) as x̃oc and
x̃oo. In the linear case, using Schur compliment, we can
verify

x̃oc =
1

2
(P12 − P13P

−1
33 PT

23)
T(P11 − P13P

−1
33 PT

13)
−1x,

x̃oo = −
1

2
Q−1

22 QT
12x.

(21)

They lead to

Lc(x) =
1

2
xT(P11 − P13P

−1
33 PT

13)
−1x,

Lo(x) =
1

2
xT(Q11 − Q12Q

−1
22 QT

12) x
(22)

which reveals that this definition of the constraints x̃oc(x)

and x̃oo(x) is a natural nonlinear generalization of the
linear case result.

Application of unweighted balanced realization pro-
cedure with respect to the weighted controllability and
observability functions Lc(x) and Lo(x) yields weighted
balanced realization. That is, if the product (P11 −

P13P
−1
33 PT

13)(Q11 − Q12Q
−1
22 QT

12), which are calculated
from the Gramians of the Jacobian linearization of the
augmented model, has nonzero and distinct eigenvalues,
then Theorem 2 implies that there exist a neighborhood U

of the origin and a coordinate transformation x = Φ(z) on
U converting the weighted controllability and observability



functions into the following form

Lc(Φ(z)) =
1

2

n
∑

i=1

z2
i

σi(zi)
, (23)

Lo(Φ(z)) =
1

2

n
∑

i=1

z2
i σi(zi). (24)

Then we can get a weighted reduced order model of Σ by
truncation. In the linear case, these equations reduce to (9).
See [8], [9] for the detail. Thus, this procedure seems to be
natural extension of linear weighted balanced realization.

Remark 1: As in the linear case, when Wo = id, that
is, only the input weight is applied, the weighted ob-
servability function Lo(x) coincides with the unweighted
observability function of the original system Σ. Similarly,
when Wi = id, the weighted controllability function Lc(x)

coincides with the unweighted one.

B. Model reduction and stability

Suppose that we already have a coordinate transforma-
tion x = Φ(z) for weighted balanced realization and that

min σk(zk) � maxσk(zk), ∀z ∈ W

holds with a neighborhood W of the origin. Then the
state variables (z1, . . . , zk) play more important roles than
(zk+1, . . . , zn). According to this partition, divide the
coordinates into two parts as

za := (z1, . . . , zk) ∈ R
k

zb := (zk+1, . . . , zn) ∈ R
n−k

(

fza(z)

fzb(z)

)

:= fz(z) =
∂Φ−1(x)

∂x

∣

∣

∣

∣

x=Φ(z)

f(Φ(z))

(

gza(z)

gzb(z)

)

:= gz(z) =
∂Φ−1(x)

∂x

∣

∣

∣

∣

x=Φ(z)

g(Φ(z)).

Then we obtain a weighted reduced order model Σa of Σ

on W as

Σa :

{

ża = fza(za, 0) + gza(za, 0)u

y = h(Φ(za, 0))
. (25)

Next, we show the stability of the weighted reduced
model Σa. In order to prove the stability, we provide the
following lemma which is a slightly modified version of
the Morse’s lemma [12],

Lemma 1: Let α be a smooth vector valued function :
ξ 7→ α(ξ) ∈ R

1×p, α(0) = 0 in a neighborhood V of 0.
Then there exist a smooth matrix Γ ∈ R

n×p defined on V

such that
α(ξ) = ξTΓ (ξ). (26)

Using this lemma, our main result can be obtained. The
following theorem guarantees local asymptotic stability of
the reduced order model in (frequency) weighted balanced
truncation.

Theorem 4: Suppose that the Jacobian linearization of
the augmented model is controllable and that the original
system Σ is asymptotically stable. Then there exists a
neighborhood U of origin such that the weighted reduced
model Σa is asymptotically stable on U .

Proof: Substituting the weighted controllability and
observability functions for Equations (15) and (16), we can
obtain the following equations

∂Lc(x)

∂x
f(x)

+
1

2

∥

∥

∥

∥

∥

∂L̄c(x, xo, xi)

∂(x, xi)

∣

∣

∣

∣

xo=x̃oc
xi =0

(

g(x)Di

Bi

)

∥

∥

∥

∥

∥

2

= 0,

(27)
∂Lo(x)

∂x
f(x) +

1

2
h̃(x)Th̃(x) = 0

(28)

where Bi := gi(0), Di := di(0), h̃(x) := ho(x̃oo) +

do(x̃oo)h(x) . Here we use the following relation

∂Lc(x)

∂x
=

∂

∂x
(L̄c(x, x̃oc, 0))

=

(

∂L̄c(x, xo, xi)

∂x
+

∂L̄c(x, xo, xi)

∂xo

∂x̃oc

∂x

)∣

∣

∣

∣

xo=x̃oc
xi =0

=
∂L̄c(x, xo, xi)

∂x

∣

∣

∣

∣

xo=x̃oc
xi =0

and a similar equation where Lc(x) and x̃oc are replaced by
Lo(x) and x̃oo. Now, we define a coordinate transformation
ξ = Ψ(x) as follows.

ξ = Ψ(x) :=
∂L̄c(x, xo, xi)

∂x

T
∣

∣

∣

∣

∣

xo=x̃oc
xi =0

=
∂Lc(x)

∂x

T

(29)

This transformation fulfills Ψ(0) = 0. Let xi ∈ R
ni and

define α(ξ) ∈ R
1×ni as

α(ξ) :=
∂L̄c

∂xi

(Ψ−1(ξ), x̃oc(Ψ
−1(ξ)), 0). (30)

Since the Hessian of L̄c(x̄) with respect to x is positive
definite at the origin, the implicit function theorem guar-
antees that there exist a neighborhood V of the origin and
that ξ = 0 ⇒ Ψ−1(0) = 0 on V . Then, we can apply
Lemma 1 to α(ξ) on V because α(0) = 0. There exists a
matrix Γ̄ (ξ) ∈ R

n×ni such that

α(ξ) = ξTΓ̄ (ξ).

Let Γ (x) := Γ̄ (Ψ(x)), then we obtain following equation.

∂L̄c(x, xo, xi)

∂xi

∣

∣

∣

∣

xo=x̃oc
xi =0

=
∂Lc(x)

∂x
Γ (x). (31)

Finally, substituting Equation (31) for Equation (27), we
obtain the following Hamilton-Jacobi equation

∂Lc(x)

∂x
f(x) +

∂Lc(x)

∂x
g̃(x)g̃(x)T

∂Lc(x)

∂x

T

= 0 (32)



where g̃ is defined by

g̃(x) :=
(

In Γ (x)
)

(

g(x)Di

Bi

)

. (33)

Therefore, let system Σ′ be given by

Σ′

{

ẋ = f(x) + g̃(x)u

y = h̃(x)
, (34)

then, from Equations (28) and (32), the weighted balanced
truncation problem of Σ corresponds to the unweighted
balanced truncation problem of Σ′ in a neighborhood of
the origin as in the linear case. Since unweighted balanced
truncation guarantees the stability of the reduced order
model, the reduced model Σa is also asymptotically stable.
This completes the proof.
Furthermore, we can show following theorem on global
stability of the reduced order model.

Theorem 5: Suppose that L̄o(x̄) is radially unbounded
and positive definite, the coordinate transformation x =

Φ(z) for weighted balanced realization is defined globally
and x̃oo(x) is defined globally. Then the reduced order
model Σa is globally stable.

Proof: The Hamilton-Jacobi equation (28) with re-
spect to Lo(x) reduces to

∂Lo(Φ(z))

∂x
f(Φ(z)) +

1

2
h(Φ(z))Th(Φ(z)) = 0

∂Lo(Φ(z))

∂x

∂Φ(z)

∂z

∂Φ(z)

∂z

−1

f(Φ(z))

+
1

2
h(Φ(z))Th(Φ(z)) = 0

∴
∂Lo(Φ(z))

∂z
fz(z) +

1

2
h(Φ(z))Th(Φ(z)) = 0.

(35)

Substituting z = (za, 0), we obtain

∂Lo(Φ(za, 0))

∂z
fza(za) +

1

2
h(Φ(za, 0))Th(Φ(za, 0)) = 0.

(36)
Let La

o(za) := Lo(Φ(za, 0)), its time-derivative along to a
solution za is

dLa
o(z

a)

dt
=

∂Lo(Φ(za, 0))

∂z
fza(za)

= −
1

2
‖h(Φ(za, 0))‖Rn . (37)

The right hand side of this equation is negative semi-
definite and this implies that La

o(z
a) is a Lyapunov func-

tion of Σa defined globally. Therefore, Σa is globally
stable.

Remark 2: The assumption that L̄o(x̄) is positive defi-
nite is automatically satisfied when the augmented system
Wo ◦Σ◦Wi is asymptotically stable and zero-state observ-
able.

Corollary 1: In Theorem 5, if the reduced order model
Σa is zero-state observable, then Σa is global asymptoti-
cally stable.

Proof: The zero-state observability of Σa implies that

y = h(Φ(za, 0)) ≡ 0 ⇒ za ≡ 0. (38)

Thus, the time-derivative of La
o(z

a) is negative definite
for Equation (37). Since La(za) is assumed to be positive
definite, Lyapunov theory guarantees globally asymptotical
stability of Σa.

IV. NUMERICAL SIMULATION

In this section, we apply the proposed procedure to a
double pendulum depicted in Figure 1. In this study, we
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Fig. 1. The double pendulum

take the physical parameters as follows: the masses located
at the end of the first and second links: m1 = 5.0, m2 =

2.0, the lengths of the first and second links: l1 = 5.0, l2 =

1.0, the friction coefficients of the first and second links:
µ1 = 25, µ2 = 0.05 and the gravity constant: g = 9.8.
The input u is the torque applied to the joint of the first
link and the output y denotes the horizontal diaplacement
of the mass 2:

y = l1 sinx1 + l2 sin(x1 + x2). (39)

The state-space realization of this system can be de-
scribed as the form (1) with a 4 dimensional state x =

(x1, x2, x3, x4) := (x1, x2, ẋ1, ẋ2). The system has two
natural freuencies as one can observe from the response
of the output signal. Here we consider a problem to obtain
a reduced order model approximating the lower natural
frequency output behavior of the original model. Therefore,
the following low pass filter is employed as an output
weighting operator.

Wo :







ẋo =

(

0 1

−16.9 −2.6

)

xo +

(

0

1

)

uo

yo =
(

1.69 0
)

xo

(40)

No input weight is used, i.e. Wi = id.
Figures 2 and 3 plot the Hankel singular value fun-

tions obtained by the normal (internal) balanced and the
weighted balanced realization respectively. Though the
system is nonlinear, the singular value functions are almost
constant in both cases. As noted in the figure, the
horizontal axis denotes a parameter whose absolute value
represents distance from the origin s, the line with ‘4’
denotse σ1(s), the line with ‘5’ denotes σ2(s), the line
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Fig. 3. Weighted Hankel singular value functions

with ‘�’ denotes σ3(s) and the line with ‘©’ denotes
σ4(s). In Figure 2, the singular value functions are close
to each other. This fact implies that all state variables
are closely related with the input and output behavior.
Therefore, we can not obtain a reduced order model
by truncation. On the other hand, we can obsearve that
σ2(s) � σ3(s) holds by introducing the weight in Figure
3. This fact implies that σ1(s) and σ2(s) are strongly
related with weighted (low frequency) output compared
with σ3(s) and σ4(s). Therefore we can obtain the reduced
order model by truncating the states correspondings to
σ1(·) and σ2(·) and the dimension of reduced order model
is 2.

Finally, we compare output responses of the orignal
and weighted reduced order models respect to impulsive
input. Figure 4 depicts the output responses. The black line
represents the ouput of the original model and the gray one
represents that of the weighted reduced order model. It can
be readily observed that the gray line approximates the low
frequency movement of the black one. It is sure that the
gray line can capture the low frequency movement of the
black line. This result states the effect of the proposed
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Fig. 4. Responses of the horizontal displacement

procedure.

V. CONCLUSION

In this paper, (frequency) weighted balanced realization
and the corresponding model order reduction technique
are proposed. This is a natural nonlinear generalization
of the existing linear case results. It is proved that the
reduced order system becomes stable when the original
system is so. Furthermore, the numerical simulation has
demonstrated its effect.
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